Capacitores e Indutores

- Um capacitor é um dispositivo que é capaz de armazenar e distribuir carga elétrica em um circuito.
- A capacitância (C) é a grandeza física associada a esta capacidade de armazenamento da carga elétrica pelo capacitor.
- Quanto maior a capacitância, maior a quantidade de carga armazenada entre as placas de um capacitor para uma mesma tensão.

Figura 10.4 Circuito simples de carga com duas placas.

1 Farad $=\frac{1 \text { Coulomb }}{1 \text { Volt }}$

Campo Elétrico em um capacitor de placas paralelas

$$
E=\frac{V}{d} \quad(V / m)
$$

Figura 10.6 Distribuição das linhas de campo na região entre as placas de um capacitor: (a) inclusão do efeito de borda; (b) ideal.

Campo elétrico em um capacitor preenchido com um material dielétrico

(a)

(b)

O campo elétrico em um capacitor de placas paralelas com um dielétrico entre as placas é reduzido se comparado com um capacitar sem um dielétrico entre suas placas pois há a polarização no material. É criado um campo elétrico oposto àquele criado pelas cargas livres entre as placas do capacitor.

Capacitância em um capacitor preenchido com ar

$$
C=\frac{Q}{V}=\frac{\sigma A}{E . d}=\frac{\sigma A}{\frac{\sigma}{\epsilon_{0}} d}
$$

$$
C=\frac{\epsilon_{0} A}{d}
$$

$$
\epsilon_{0}=8,85 \times 10^{-12} \quad\left(\frac{F}{m}\right)
$$

Capacitância em um capacitor preenchido com um material dielétrico

$\epsilon \rightarrow$ permissividade do dielétrico

$$
\epsilon_{r}=\frac{\epsilon}{\epsilon_{0}}
$$

$\epsilon_{r} \rightarrow$ permissividade relativa

Circuito RC

O capacitor está inicialmente descarregado.
 Fechando a chave, surge uma corrente no circuito que vai fazer com que carga seja acumulada no capacitor e uma diferença de potencial $V=Q / C$ no capacitor será estabelecida. Quando $\mathrm{V}=\mathrm{E}$, a corrente deixa Figura 10.26 Circuito simples para carregar um capacitor. de circular.

$$
E-i R-Q / C=0 \quad i=\frac{d Q}{d t}=\dot{Q} \quad E-\dot{Q} R-\frac{Q}{C}=0
$$

$$
\dot{Q}+\frac{1}{R C} Q=\frac{E}{R}
$$

$$
Q(0)=0
$$

Resolvendo a equação diferencial.

$$
\dot{Q}+\frac{1}{R C} Q=\frac{E}{R}
$$

Solução Geral. $\quad Q=Q_{p}+K e^{-a t}$
$Q_{p} \quad$ é a solução particular

$$
a=\frac{1}{R C}
$$

Fazendo $d Q / d t=0$ na equação diferencial.

$$
0+\frac{Q_{p}}{R C}=\frac{E}{R} \rightarrow Q_{p}=C E
$$

Daí, ficamos com

$$
Q=C E+K e^{-a t}
$$

$Q(0)=0 \rightarrow 0=C E+K \rightarrow K=-C E$

Finalmente,

$$
Q(t)=C E\left(1-e^{-\frac{t}{R C}}\right)
$$

Observe que:

$$
t \rightarrow \infty ; \quad Q(t) \rightarrow C E
$$

Calculando a corrente:

$$
i=\frac{d Q}{d t}
$$

$$
i(t)=\left(\frac{E}{R}\right) e^{-\frac{t}{\pi^{(N}}}
$$

$\mathrm{V}(\mathrm{t}), \mathrm{Q}(\mathrm{t})$

Como $\mathrm{Q}=\mathrm{CV}$ temos que $\mathrm{V}=\mathrm{Q} / \mathrm{C}$

$$
V_{C}(t)=E\left(1-e^{-\frac{t}{R C}}\right)
$$

$$
t=0 \rightarrow V_{C}=0
$$

$$
t=\infty \rightarrow V_{C}=E
$$

FIG. 10.25
i_{C} during the charging phase.

Note que a tensão através do resistor é calculada pela lei de Ohm

$$
\begin{gathered}
V=\operatorname{Ri}(t) \\
V=R\left(\frac{E}{R}\right) e^{-\frac{t}{R C}}
\end{gathered}
$$

$$
V=E e^{-\frac{t}{R C}}
$$

Descarga do Capacitor

- Abrindo-se novamente a chave do circuito quando o capacitor está totalmente carregado $\left(\mathrm{V}_{\mathrm{c}}=\mathrm{E}\right)$, ele começa a descarregar-se.
- Como variam a carga, a corrente e a tensão em função do tempo nesta etapa?
- Com a chave aberta a fonte não fornece tensão ao circuito, portanto $\mathrm{E}=0$
- Utilizando Kirchhoff, obtemos a equação diferencial.

$$
\begin{gathered}
-i R-\frac{Q}{C}=0 \\
\quad \downarrow=\frac{d Q}{d t}=\dot{Q} \\
\dot{Q}+\frac{1}{R C} Q=0
\end{gathered}
$$

Solução:

$$
Q(t)=Q_{0} e^{-\frac{t}{R C}}
$$

Quando t=RC

$$
Q(t)=0,37 Q_{0}
$$

Calculando a corrente $i(t)$ e a tensão $V(t)$, respectivamente.

$$
i(t)=-\frac{Q_{0}}{R C} e^{-\frac{t}{R C}} \left\lvert\, \operatorname{com} i_{0}=\frac{Q_{0}}{R C}=\frac{E}{R}\right.
$$

O sinal de (-) somente indica que a partir do desligamento da chave a corrente no capacitor vai diminuir

$$
\left.V_{C}(t)=\frac{Q_{0}}{C} e^{-\frac{t}{R C}} \quad \right\rvert\, \text { com } \quad V_{0}=\frac{Q_{0}}{C}
$$

- A discussão vale para situações onde o capacitar carrega de acordo com a tensão da bateria.
- Se a fase de carga é interrompida antes do capacitor atingir a voltagem da fonte, a voltagem capacitiva obviamente será menor e a equação para a descarga terá a forma:

$$
V_{C}=V_{i} e^{-\frac{t}{R C}}
$$

- Onde V_{i} é a voltagem inicial para a descarga. O mesmo vale para a corrente

$$
i_{C}=\frac{V_{i}}{R} e^{-\frac{t}{R C}}
$$

Exemplo 1: Encontre o comportamento transiente para o capacitor e o resistor do circuito abaixo quando a chave é movida para a posição (1). Esboce os gráficos de V_{C}, V_{R} e ic. Quanto tempo passa antes de assumirmos que $\mathrm{i}_{\mathrm{c}}=0(\mathrm{~A})$ e $\mathrm{V}_{\mathrm{C}}=\mathrm{E}(\mathrm{V})$

Exemplo 2: Depois de V_{C} ter atingido seu valor máximo no exemplo anterior, a chave é colocada na posição 2 conforme mostra o circuito abaixo. Encontre as expressões para os comportamentos transientes de \bigvee_{C}, ic $e V_{R}$,

Exemplo 3: a) Encontre as expressões matemáticas para o comportamento transiente da tensão e da corrente através do capacitor da figura abaixo se a chave é colocada na posição $1 \mathrm{em} \mathrm{t}=0 \mathrm{~s}$.
b) Faça a mesma coisa para a chave em 2 em t=30ms.
c) Encontre as expressões matemáticas para a voltagem e corrente no capacitar para a chave em $3 \mathrm{em} \mathrm{t}=48 \mathrm{~ms}$

