Capacitores e Indutores

- Um capacitor é um dispositivo que é capaz de armazenar e distribuir carga elétrica em um circuito.
- A capacitância (C) é a grandeza física associada a esta capacidade de armazenamento da carga elétrica pelo capacitor.
- Quanto maior a capacitância, maior a quantidade de carga armazenada entre as placas de um capacitor para uma mesma tensão.

Campo Elétrico em um capacitor de placas paralelas

Figura 10.6 Distribuição das linhas de campo na região entre as placas de um capacitor: (a) inclusão do efeito de borda; (b) ideal.

Campo elétrico em um capacitor preenchido com um material dielétrico

O campo elétrico em um capacitor de placas paralelas com um dielétrico entre as placas é **reduzido se comparado com um capacitar sem um dielétrico entre suas placas** pois há a polarização no material. É criado um campo elétrico oposto àquele criado pelas cargas livres entre as placas do capacitor.

Capacitância em um capacitor preenchido com ar

$$C = \frac{Q}{V} = \frac{\sigma A}{E.d} = \frac{\sigma A}{\frac{\sigma}{\epsilon_0}d}$$

 $\epsilon_0 = 8,85 \times 10^{-12} \quad \left(\frac{F}{m}\right)$

Capacitância em um capacitor preenchido com um material dielétrico

$$C = \frac{\epsilon A}{d}$$

 $\epsilon \rightarrow \mathrm{permissividade}$ do dielétrico

$$\epsilon_r = \frac{\epsilon}{\epsilon_0}$$

 $\epsilon_r \rightarrow \text{permissividade relativa}$

Circuito RC

O capacitor está inicialmente descarregado. Fechando a chave, surge uma corrente no circuito que vai fazer com que carga seja acumulada no capacitor e uma diferença de potencial V=Q/C no capacitor será estabelecida. Quando V=E, a corrente deixa

Figura 10.26 Circuito simples para carregar um capacitor. de circular.

Resolvendo a equação diferencial. 1 E

$$\dot{Q} + \frac{1}{RC}Q = \frac{E}{R}$$

Solução Geral. $Q = Q_p + Ke^{-at}$

 Q_p é a solução particular

$$a = \frac{1}{RC}$$

Fazendo dQ/dt=0 na equação diferencial.

$$0 + \frac{Q_p}{RC} = \frac{E}{R} \to Q_p = CE$$

Daí, ficamos com

$$Q = CE + Ke^{-at}$$

$$Q(0) = 0 \to 0 = CE + K \to K = -CE$$

Finalmente,

$$Q(t) = CE(1 - e^{-\frac{t}{RC}})$$

Observe que: $t \to \infty; \quad Q(t) \to CE$

Calculando a corrente:

$$i = \frac{dQ}{dt}$$

$$i(t) = \left(\frac{E}{R}\right) e^{-\frac{t}{RC}}$$

A corrente elétrica em um capacitor é praticamente nula depois de cinco ciclos de tempo, enquanto que a tensão atinge seu valor máximo depois de cinco ciclos de tempo.

A tensão através de um capacitar não pode mudar instantâneamente.

Como Q=CV temos que V=Q/C

 $V_C(t) = E(1 - e^{-\frac{\tau}{RC}})$

$t = 0 \to V_C = 0$

FIG. 10.25 i_C during the charging phase.

Note que a tensão através do resistor é calculada pela lei de Ohm

$$V = Ri(t)$$

$$V = R\left(\frac{E}{R}\right)e^{-\frac{t}{RC}}$$

$$V = Ee^{-\frac{t}{RC}}$$

Descarga do Capacitor

- Abrindo-se novamente a chave do circuito quando o capacitor está totalmente carregado (V_c=E), ele começa a descarregar-se.
- Como variam a carga, a corrente e a tensão em função do tempo nesta etapa?
- Com a chave aberta a fonte não fornece tensão ao circuito, portanto E=0
- Utilizando Kirchhoff, obtemos a equação diferencial.

$$-iR - \frac{Q}{C} = 0$$
$$i = \frac{dQ}{dt} = \dot{Q}$$

$$\dot{Q} + \frac{1}{RC}Q = 0$$

$$Q(t) = Q_0 e^{-\frac{t}{RC}}$$

$$Q(t) = 0,37Q_0$$

Calculando a corrente i(t) e a tensão V(t), respectivamente.

O sinal de (-) somente indica que a partir do desligamento da chave a corrente no capacitor vai diminuir

com $V_0 = \frac{40}{C}$

$$V_C(t) = \frac{Q_0}{C} e^{-\frac{t}{RC}}$$

- A discussão vale para situações onde o capacitar carrega de acordo com a tensão da bateria.
- Se a fase de carga é interrompida antes do capacitor atingir a voltagem da fonte, a voltagem capacitiva obviamente será menor e a equação para a descarga terá a forma:

$$V_C = V_i e^{-\frac{t}{RC}}$$

Onde V_i é a voltagem inicial para a descarga. O mesmo vale para a corrente

$$i_C = \frac{V_i}{R} e^{-\frac{t}{RC}}$$

Exemplo 1: Encontre o comportamento transiente para o capacitor e o resistor do circuito abaixo quando a chave é movida para a posição (1). Esboce os gráficos de V_C, V_R e i_C. Quanto tempo passa antes de assumirmos que i_C=0 (A) e V_C=E (V)

Exemplo 2: Depois de V_C ter atingido seu valor máximo no exemplo anterior, a chave é colocada na posição 2 conforme mostra o circuito abaixo. Encontre as expressões para os comportamentos transientes de V_C, i_C e V_R,

Exemplo 3: a) Encontre as expressões matemáticas para o comportamento transiente da tensão e da corrente através do capacitor da figura abaixo se a chave é colocada na posição 1 em t=0s.

b) Faça a mesma coisa para a chave em 2 em t=30ms.

c) Encontre as expressões matemáticas para a voltagem e corrente no capacitar para a chave em 3 em t=48ms

