
Capacitores e Indutores



• Um capacitor é um dispositivo que é capaz de armazenar e distribuir 
carga elétrica em um circuito. 

• A capacitância (C) é a grandeza física associada a esta capacidade 
de armazenamento da carga elétrica pelo capacitor. 

• Quanto maior a capacitância, maior a quantidade de carga 
armazenada entre as placas de um capacitor para uma mesma 
tensão.

C =
Q

V

1Farad =
1Coulomb

1V olt



Campo Elétrico em um capacitor de placas 
paralelas

E =
V

d
(V/m)



Campo elétrico em um capacitor preenchido 
com um material dielétrico

O campo elétrico em um capacitor de placas paralelas com um dielétrico entre 
as placas é reduzido se comparado com um capacitar sem um dielétrico 
entre suas placas pois há  a polarização no material. É criado um campo 
elétrico oposto àquele criado pelas cargas livres entre as placas do capacitor.

unit area (D) between the two plates is quite uniform. At the edges, the
flux lines extend outside the common surface area of the plates, pro-
ducing an effect known as fringing. This effect, which reduces the
capacitance somewhat, can be neglected for most practical applications.
For the analysis to follow, we will assume that all the flux lines leaving
the positive plate will pass directly to the negative plate within the com-
mon surface area of the plates [Fig. 10.5(b)].

If a potential difference of V volts is applied across the two plates
separated by a distance of d, the electric field strength between the
plates is determined by

(volts/meter, V/m) (10.6)

The uniformity of the flux distribution in Fig. 10.5(b) also indicates
that the electric field strength is the same at any point between the two
plates.

Many values of capacitance can be obtained for the same set of par-
allel plates by the addition of certain insulating materials between the
plates. In Fig. 10.6(a), an insulating material has been placed between a
set of parallel plates having a potential difference of V volts across
them.

Since the material is an insulator, the electrons within the insulator
are unable to leave the parent atom and travel to the positive plate. The
positive components (protons) and negative components (electrons) of
each atom do shift, however [as shown in Fig. 10.6(a)], to form dipoles.

When the dipoles align themselves as shown in Fig. 10.6(a), the mate-
rial is polarized. A close examination within this polarized material will
indicate that the positive and negative components of adjoining dipoles
are neutralizing the effects of each other [note the dashed area in Fig.
10.6(a)]. The layer of positive charge on one surface and the negative
charge on the other are not neutralized, however, resulting in the estab-
lishment of an electric field within the insulator [!dielectric; Fig. 10.6(b)].
The net electric field between the plates (!resultant ! !air " !dielectric)
would therefore be reduced due to the insertion of the dielectric.

The purpose of the dielectric, therefore, is to create an electric field
to oppose the electric field set up by free charges on the parallel plates.
For this reason, the insulating material is referred to as a dielectric, di
for “opposing” and electric for “electric field.”

In either case—with or without the dielectric—if the potential across
the plates is kept constant and the distance between the plates is fixed,
the net electric field within the plates must remain the same, as deter-
mined by the equation ! ! V/d. We just ascertained, however, that the
net electric field between the plates would decrease with insertion of the
dielectric for a fixed amount of free charge on the plates. To compensate
and keep the net electric field equal to the value determined by V and d,
more charge must be deposited on the plates. [Look ahead to Eq.
(10.11).] This additional charge for the same potential across the plates
increases the capacitance, as determined by the following equation:

C D !

For different dielectric materials between the same two parallel
plates, different amounts of charge will be deposited on the plates. But
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FIG. 10.6
Effect of a dielectric on the field distribution

between the plates of a capacitor: 
(a) alignment of dipoles in the dielectric; 
(b) electric field components between the

plates of a capacitor with a dielectric present.
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mined by the equation ! ! V/d. We just ascertained, however, that the
net electric field between the plates would decrease with insertion of the
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and keep the net electric field equal to the value determined by V and d,
more charge must be deposited on the plates. [Look ahead to Eq.
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C D !

For different dielectric materials between the same two parallel
plates, different amounts of charge will be deposited on the plates. But
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plates of a capacitor with a dielectric present.



Capacitância em um capacitor preenchido com 
ar

C =
Q

V
=

�A

E.d
=

�A
�
✏0
d

C =
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d
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Capacitância em um capacitor preenchido com 
um material dielétrico

C =
✏A

d
✏ ! permissividade do dielétrico

✏r =
✏

✏0

✏r ! permissividade relativa



Circuito RC

E � iR�Q/C = 0 i =
dQ

dt
= Q̇ E � Q̇R� Q

C
= 0

Q̇+
1

RC
Q =

E

R

Q(0) = 0

O capacitor está inicialmente descarregado. 
 Fechando a chave, surge uma corrente no  
circuito que vai fazer com que carga seja  
acumulada no capacitor e uma diferença 
de potencial V=Q/C no capacitor será  
estabelecida. Quando V=E, a corrente deixa  
de circular.



Resolvendo a equação diferencial.

Solução Geral. Q = Qp +Ke�at

Qp é a solução particular a =
1

RC

Fazendo  dQ/dt=0 na equação diferencial.

Q̇+
1

RC
Q =

E

R

Q = CE +Ke�at

Daí, ficamos com

Q(0) = 0 ! 0 = CE +K ! K = �CE

0 +
Qp

RC
=

E

R
! Qp = CE



Finalmente,

Q(t) = CE(1� e�
t

RC )

Observe que: t ! 1; Q(t) ! CE

Calculando a corrente: i =
dQ

dt

i(t) =

✓
E

R

◆
e�

t
RC
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Returning to Eq. (10.13), we find that the multiplying factor E/R is
the maximum value that the current iC can attain, as shown in Fig.
10.25. Substituting t ! 0 s into Eq. (10.13) yields

iC ! e"t/RC ! #
E
R

#e"0 ! #
E
R

#

verifying our earlier conclusion.
For increasing values of t, the magnitude of e"t/t, and therefore the

value of iC, will decrease, as shown in Fig. 10.31. Since the magnitude
of iC is less than 1% of its maximum after five time constants, we will
assume the following for future analysis:

The current iC of a capacitive network is essentially zero after five
time constants of the charging phase have passed in a dc network.

Since C is usually found in microfarads or picofarads, the time con-
stant t ! RC will never be greater than a few seconds unless R is very
large.

Let us now turn our attention to the charging voltage across the
capacitor. Through further mathematical analysis, the following equa-
tion for the voltage across the capacitor can be determined:

(10.15)

Note the presence of the same factor e"t/RC and the function (1 "
e"t/RC) appearing in Fig. 10.30. Since e"t/t is a decaying function, the
factor (1 " e"t/t) will grow toward a maximum value of 1 with time, as
shown in Fig. 10.30. In addition, since E is the multiplying factor, we
can conclude that, for all practical purposes, the voltage vC is E volts

vC ! E(1 " e"t/RC)

E
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FIG. 10.31
iC versus t during the charging phase.
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V(t), Q(t)

i(t)

A corrente elétrica em um capacitor é praticamente nula depois de cinco ciclos 
de tempo, enquanto que a tensão atinge seu valor máximo depois de cinco 
ciclos de tempo.  

A tensão através de um capacitar não pode mudar instantâneamente.



Como Q=CV temos que V=Q/C

VC(t) = E(1� e�
t

RC )

t = 1 ! VC = Et = 0 ! VC = 0
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gest the multiplier level. The J represents a !5% tolerance level. For
capacitors such as appearing in Fig. 10.23(c), the first two numbers are
actual digits of the value, while the third number is the power of a mul-
tiplier (or number of zeros to be added). The F represents a !1% toler-
ance level. Multipliers of 0.01 use an 8, while 9 is used for 0.1 as shown
for the capacitor of Fig. 10.23(d) where the M represents a !20% tol-
erance level.

10.7 TRANSIENTS IN CAPACITIVE NETWORKS:
CHARGING PHASE
Section 10.3 described how a capacitor acquires its charge. Let us now
extend this discussion to include the potentials and current developed
within the network of Fig. 10.24 following the closing of the switch (to
position 1).

You will recall that the instant the switch is closed, electrons are
drawn from the top plate and deposited on the bottom plate by the bat-
tery, resulting in a net positive charge on the top plate and a negative
charge on the bottom plate. The transfer of electrons is very rapid at
first, slowing down as the potential across the capacitor approaches the
applied voltage of the battery. When the voltage across the capacitor
equals the battery voltage, the transfer of electrons will cease and the
plates will have a net charge determined by Q " CVC " CE.

Plots of the changing current and voltage appear in Figs. 10.25 and
10.26, respectively. When the switch is closed at t " 0 s, the current
jumps to a value limited only by the resistance of the network and then
decays to zero as the plates are charged. Note the rapid decay in current
level, revealing that the amount of charge deposited on the plates per
unit time is rapidly decaying also. Since the voltage across the plates is
directly related to the charge on the plates by vC " q/C, the rapid rate
with which charge is initially deposited on the plates will result in a
rapid increase in vC. Obviously, as the rate of flow of charge (I)
decreases, the rate of change in voltage will follow suit. Eventually, the
flow of charge will stop, the current I will be zero, and the voltage will
cease to change in magnitude—the charging phase has passed. At this
point the capacitor takes on the characteristics of an open circuit: a volt-
age drop across the plates without a flow of charge “between” the
plates. As demonstrated in Fig. 10.27, the voltage across the capacitor
is the source voltage since i " iC " iR " 0 A and vR " iRR " (0)R "
0 V. For all future analysis:

A capacitor can be replaced by an open-circuit equivalent once the
charging phase in a dc network has passed.

Looking back at the instant the switch is closed, we can also surmise
that a capacitor behaves as a short circuit the moment the switch is
closed in a dc charging network, as shown in Fig. 10.28. The current
i " iC " iR " E/R, and the voltage vC " E # vR " E # iRR "
E # (E/R)R " E # E " 0 V at t " 0 s.

Through the use of calculus, the following mathematical equation
for the charging current iC can be obtained:

(10.13)iC " $
E
R

$e#t/RC

R

+
E

–

+ –
vR  =  0 V

VC  =  E

+

–

iC  =  0 A

FIG. 10.27
Open-circuit equivalent for a capacitor

following the charging phase.
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(switch closed, t " 0).

FIG. 10.24
Basic charging network.
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Note que a tensão através do resistor é calculada pela lei de Ohm

V = Ri(t)

V = R

✓
E

R

◆
e�

t
RC

V = Ee�
t

RC



Descarga do Capacitor

• Abrindo-se novamente a chave do circuito quando o 
capacitor está totalmente carregado (Vc=E), ele começa a 
descarregar-se. 

• Como variam a carga, a corrente e a tensão em função do 
tempo nesta etapa? 

• Com a chave aberta a fonte não fornece tensão ao circuito, 
portanto E=0 

• Utilizando Kirchhoff, obtemos a equação diferencial.



�iR� Q

C
= 0

i =
dQ

dt
= Q̇

Q̇+
1

RC
Q = 0

Solução:

Q(t) = Q0e
� t

RC



Quando t=RC

Q(t) = 0, 37Q0

Calculando a corrente i(t) e a tensão V(t), respectivamente.

com 

O sinal de (-) somente indica que a partir do desligamento da chave a 
corrente no capacitor vai diminuir

i(t) = � Q0

RC
e�

t
RC

VC(t) =
Q0

C
e�

t
RC com V0 =

Q0

C

i0 =
Q0

RC
=

E

R



• A discussão vale para situações onde o capacitar carrega de acordo 
com a tensão da bateria.  

• Se a fase de carga é interrompida antes do capacitor atingir a 
voltagem da fonte, a voltagem capacitiva obviamente será menor e a 
equação para a descarga terá a forma:

VC = Vie
� t

RC

• Onde Vi  é a voltagem inicial para a descarga. O mesmo vale para a 
corrente 

iC =
Vi

R
e�

t
RC



Exemplo 1: Encontre o comportamento transiente para o capacitor e o 
resistor do circuito abaixo quando a chave é movida para a posição (1). 
Esboce os gráficos de VC, VR e iC. Quanto tempo passa antes de assumirmos 
que iC=0 (A) e VC=E (V)
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after five time constants of the charging phase. A plot of vC versus t is
provided in Fig. 10.32.

If we keep R constant and reduce C, the product RC will decrease,
and the rise time of five time constants will decrease. The change in
transient behavior of the voltage vC is plotted in Fig. 10.33 for various
values of C. The product RC will always have some numerical value,
even though it may be very small in some cases. For this reason:

The voltage across a capacitor cannot change instantaneously.

In fact, the capacitance of a network is also a measure of how much it
will oppose a change in voltage across the network. The larger the
capacitance, the larger the time constant, and the longer it takes to
charge up to its final value (curve of C3 in Fig. 10.33). A lesser capaci-
tance would permit the voltage to build up more quickly since the time
constant is less (curve of C1 in Fig. 10.33).

The rate at which charge is deposited on the plates during the charg-
ing phase can be found by substituting the following for vC in Eq.
(10.15):

vC !

and charging (10.16)

indicating that the charging rate is very high during the first few time
constants and less than 1% after five time constants.

The voltage across the resistor is determined by Ohm’s law:

vR ! iRR ! RiC ! R"
E
R

"e#t/t

or (10.17)

A plot of vR appears in Fig. 10.34.
Applying Kirchhoff’s voltage law to the circuit of Fig. 10.24 will

result in

vC ! E # vR

Substituting Eq. (10.17):

vC ! E # Ee#t/t

Factoring gives vC ! E(1 # e#t/t), as obtained earlier.

EXAMPLE 10.5
a. Find the mathematical expressions for the transient behavior of vC,

iC, and vR for the circuit of Fig. 10.35 when the switch is moved to
position 1. Plot the curves of vC, iC, and vR.

b. How much time must pass before it can be assumed, for all practical
purposes, that iC ! 0 A and vC ! E volts?

Solutions:
a. t ! RC ! (8 $ 103 %)(4 $ 10#6 F) ! 32 $ 10#3 s ! 32 ms

By Eq. (10.15),

vC ! E(1 # e#t/t) ! 40(1 ! e!t/(32"10!3))

vR ! Ee#t/t

q ! CvC ! CE(1 # e#t/t)

q
"
C

vC  =  E(1 – e–t/

E
vC

0 t1 2 3 4 5

63.2%

86.5%
95% 98.2% 99.3%

! ! ! ! !

!)

FIG. 10.32
vC versus t during the charging phase.

FIG. 10.33
Effect of C on the charging phase.
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vR versus t during the charging phase.
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Exemplo 2: Depois de VC ter atingido seu valor máximo no exemplo anterior, 
a chave é colocada na posição 2 conforme mostra o circuito abaixo. 
Encontre as expressões para os comportamentos transientes de VC, iC e VR,
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which employs the function e!x and the same time constant used above.
The resulting curve will have the same shape as the curve for iC and vR
in the last section. During the discharge phase, the current iC will also
decrease with time, as defined by the following equation:

discharging
(10.19)

The voltage vR " vC, and

discharging (10.20)

The complete discharge will occur, for all practical purposes, in five
time constants. If the switch is moved between terminals 1 and 2 every
five time constants, the wave shapes of Fig. 10.39 will result for vC, iC,
and vR. For each curve, the current direction and voltage polarities were
defined by Fig. 10.24. Since the polarity of vC is the same for both the
charging and the discharging phases, the entire curve lies above the
axis. The current iC reverses direction during the charging and dis-
charging phases, producing a negative pulse for both the current and the
voltage vR. Note that the voltage vC never changes magnitude instanta-
neously but that the current iC has the ability to change instantaneously,
as demonstrated by its vertical rises and drops to maximum values.

vR " Ee!t/RC

iC " #
E
R

#e!t/RC

E
vC

0 tPos. 1 15tPos. 2 Pos. 1 Pos. 2

E iC

0 tPos. 1

Pos. 2

Pos. 1

Pos. 2

R

E
vR

0 tPos. 1

Pos. 2

Pos. 1

Pos. 2

E
R

10t5t
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FIG. 10.39
The charging and discharging cycles for the

network of Fig. 10.24.
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Example 10.6.

EXAMPLE 10.6 After vC in Example 10.5 has reached its final value
of 40 V, the switch is thrown into position 2, as shown in Fig. 10.40.
Find the mathematical expressions for the transient behavior of vC, iC,



Exemplo 3: a) Encontre as expressões matemáticas para o comportamento 
transiente da tensão e da corrente através do capacitor da figura abaixo se a 
chave é colocada na posição 1 em t=0s. 
b) Faça a mesma coisa para a chave em 2 em t=30ms. 
c) Encontre as expressões matemáticas para a voltagem e corrente no 
capacitar para a chave em 3 em t=48ms
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and vR after the closing of the switch. Plot the curves for vC, iC, and vR
using the defined directions and polarities of Fig. 10.35. Assume that
t ! 0 when the switch is moved to position 2.

Solution:

t ! 32 ms

By Eq. (10.18),

vC ! Ee"t/t ! 40e!t/(32"10!3)

By Eq. (10.19),

iC ! "#
E
R

#e"t/t ! !(5 " 10!3)e!t/(32"10!3)

By Eq. (10.20),

vR ! "Ee"t/t ! !40e!t/(32"10!3)

The curves appear in Fig. 10.41.

The preceding discussion and examples apply to situations in which
the capacitor charges to the battery voltage. If the charging phase is dis-
rupted before reaching the supply voltage, the capacitive voltage will be
less, and the equation for the discharging voltage vC will take on the
form

(10.21)

where Vi is the starting or initial voltage for the discharge phase. The
equation for the decaying current is also modified by simply substitut-
ing Vi for E; that is,

(10.22)

Use of the above equations will be demonstrated in Examples 10.7 and
10.8.

EXAMPLE 10.7
a. Find the mathematical expression for the transient behavior of the

voltage across the capacitor of Fig. 10.42 if the switch is thrown into
position 1 at t ! 0 s.

b. Repeat part (a) for iC.
c. Find the mathematical expressions for the response of vC and iC if

the switch is thrown into position 2 at 30 ms (assuming that the
leakage resistance of the capacitor is infinite ohms).

d. Find the mathematical expressions for the voltage vC and current iC
if the switch is thrown into position 3 at t ! 48 ms.

e. Plot the waveforms obtained in parts (a) through (d) on the same
time axis for the voltage vC and the current iC using the defined
polarity and current direction of Fig. 10.42.

iC ! #
V
R

i#e"t/t ! Iie"t/t

vC ! Vie"t/RC

R2 200 k!

R1

100 k!

E 10 V
C 0.05 mF

21 3

iC

vC

+

–

FIG. 10.42
Example 10.7.
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FIG. 10.41
The waveforms for the network of Fig. 10.40.


